
Eur. Phys. J. B 16, 269–286 (2000) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. We present a theory of polarons incorporating the screening of the Coulomb interaction, and we
apply this theory to the case of anisotropic ionic crystals as the perovskites. We show that the “screened
polarons” cannot be treated individually: all the polarons present in the material are coupled via the
screening. We also show that, in the frame of this theory of large-scale polarons, the bipolarons are excluded
and replaced by pairs of polarons; we propose to associate the pseudogap experimentally observed in
perovskites with the binding energy of these pairs. Finally we suggest that the existence of the polarons
pairs poses in new terms the problem of a polaronic theory of superconductivity.

PACS. 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons, resonating
valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.) – 74.25.Kc Phonons
– 74.72.-h High-Tc compounds

Introduction

Introducing polarons in the theory of superconductivity
is a priori interesting because the interaction of two po-
larons, via their coupling with the lattice, may be much
stronger than those of two dressed free electrons (inter-
action which produces the Cooper pairs in BCS theory).
As a consequence a higher critical temperature may be
expected in a polaronic theory of superconductivity.

Although the subject is a very old one (it traces back to
the thirties with the pioneer work of Landau [1]), we think
that some basic features of polaron theory still deserve to
be clarified before embarking any theory of superconduc-
tivity.

The first point is: what are the conditions of existence
of polarons? Curiously enough the existence problem was
not posed to the inventors of polarons (Landau, Pekar,
Fröhlich [1–3]). The reason is that they considered an
electron-lattice interaction with infinite range, in which
case polarons can be shown to always exist. But this sit-
uation is not generic, and also unphysical. An existence
condition appears as soon as the interaction range is fi-
nite. Actually the condition is that the norm of V (r), the
electron-lattice interaction, is large enough, and it appears
that this condition is satisfied when the range of V (r) is
infinite. In the general case a polaron results from the
coupling of an electron with both optical and acoustical
phonons (remember that the Landau or Fröhlich polaron
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is purely optical). This last coupling is responsible for
the mutual attraction of polarons at large distance, – a
property of obvious importance in a theory of supercon-
ductivity. But it can be shown (see for instance Haken [4])
that the interaction energy of an electron with the acoustic
field diverges when the range λ of the acoustical part Vac

of V (r) is infinite. Therefore λ must be finite. In the pre-
vious literature the acoustical coupling has been treated
phenomenologically [5–10] by assuming a δ like form of Vac

(that is λ ≈ 0). Then Emin et al. [5–7] indeed obtained
an existence criterium for the polarons.

We propose, in this paper, to go beyond the phe-
nomenological description of the acoustical coupling by
taking account, in an ionic crystal, of the screening of the
Coulomb interaction. Then λ is nothing else but the range
of the screened Coulomb potential. Let us mention that
the importance of the screening was foreseen long ago by
Brazovskii [11], but not further investigated.

In the course of our work we have discovered that the
screening phenomenon has much more implications than
quantitatively improving the description of polarons. The
major point is that one cannot treat the dynamics of one
polaron independently from those of all the other polarons
present in the material. Even if one ignores the polaron-
polaron interaction, the polaron dynamics is a collective
process. The reason is the following:
In a material where polarons do exist the charge carriers
(density ncc) are distributed over the free electronic states
(density ne) and the polaronic states (density np), and we
have ncc = ne + np. The electronic states form two bands
respectively associated with the free electrons and pola-
ronic states. Now the screened potential V (r) depends on
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ne, that is on np = ncc − ne. But the width of the pola-
ronic band, which is related to np, is a functional of V (r).
Therefore np, ne and the various characteristics of the po-
larons are obtained through a self-consistent calculation
in which all the polarons play a role.

The self-consistent aspect of the polaron dynamics has
a decisive impact on the existence criterium. Indeed the
formation of a set of polarons, which is energetically fa-
vorable, produces a diminution of ne. As a consequence
the effective range of V (r) is increased, which makes eas-
ier the formation of polarons (this argument holds when
the screening by the polarons may be neglected: a situ-
ation which is realized at low enough temperature). We
find that this effect is responsible for the very existence of
the polarons.

The choice of the screening model proves also to be of
great importance. We had to decide between the Thomas-
Fermi and the Lindhard model (see Ref. [12]). We know
that the Lindhard correction to the Thomas-Fermi re-
sponse function is appreciable for wave numbers k larger
than 2kF (Fermi wave number), and the efficiency of the
screening is considerably decreased for k > 2kF. There-
fore the Lindhard correction may favor the formation of
polarons if their width δ is of the order or smaller than
(2kF)−1. Actually we show the existence of two classes of
polarons:

1) the “weak polarons” which are large-scale and rela-
tively small amplitude objects. They satisfy condition:
δ > (2kF)−1. Moreover their interaction with the lat-
tice is characterized by a potential ϕ(r), which de-
creases monotonically from the polaron center. The
weak polarons are reminiscent of those of the standard
theory.

2) The “strong polarons” whose width is much smaller
and the amplitude larger. Their width is such that δ <
(2kF)−1, and, therefore they must be described using
the Lindhard response function. Their potential ϕ has
an oscillating behavior, which is associated with the
Friedel oscillations of the screened potential.

The oscillating character of the strong polarons has an im-
portant implication: it is responsible for the formation of
pairs of polarons with an appreciable binding energy. We
propose to associate the binding energy of the polarons
pairs with the pseudogap experimentally observed in per-
ovskites. On the other hand we do not find bipolarons
as solutions of the model equations (including the direct
Coulomb repulsion between the two electrons).

We also find that the solution of the self-consistent
problem is always a strong polaron. However the weak
polarons play a role in the nucleation of the first polarons
(non self- consistent problem) in a medium where the only
charge carriers present at initial time are free electrons.

Our model deals with large-scale polarons: it is a con-
tinuous model in which the discreteness of the crystal is
ignored. Remember that bipolaronic theories which usu-
ally deal with small polarons (according to Hölstein classi-
fication [13]) encounter serious difficulties due to the very
large effective mass and poor mobility of the bipolarons.

This led Emin [5–7] to look for large polarons (or bipo-
larons), and we adopt this point of view in this paper. Let
us precise that the strong polarons we are considering here
do not belong to the class of small polarons.

Our model can be a priori applied to two types of
materials:

i) The metals, which can be conveniently described by a
3D isotropic model, the only relevant coupling being
those with the acoustical phonons. Let us also mention
that metals have a large density of charge carriers and
therefore large values of kF (of the order of the inverse
lattice period).

ii) The strongly anisotropic materials such as the per-
ovskites. Then we assume that the charge carriers
are constrained to move in parallel planes (the CuO2

planes), and the polarons would be flat disks in these
planes. Here we have ions with charges of opposite
sign and therefore we get a coupling with the optical
phonons. On the other hand the excitation of acousti-
cal phonons results from the coupling of the electrons
with the uncompensated ionic charges. These charges
are only a fraction ν of the total number of ions (ν is of
the order of 10−2 in a cuprate: see Ref. [14]). Therefore
kF is expected to be much smaller than in metals.

We call this model the 2D model, although this termi-
nology is somewhat misleading since the Coulomb field is
actually 3D.

The polaron equations will be given for the two models,
but they will be solved only in the case of the 2D model. Of
course this last model is a priori more appealing since it
refers to materials where polarons are known experimen-
tally to exist. However one may wonder whether polarons
are allowed in metals, and if they are not, it would be
satisfactory to understand why. With the aim of shorten-
ing an already long paper we postpone the study of the
metallic case to a further publication.

1 The model equations

As was said in the introduction, we are interested, in the
case of the 2D model in a crystal made of ions with oppo-
site charges and exhibiting a global charge defect ν. In the
limit of a continuous description of this material, it can
be shown that such a system is conveniently modelized
by a density of dipoles (each cell of the periodic lattice
containing one effective dipole made of opposite charges)
and by a density (νρ) of uncompensated electric charges.
The uncompensated charges are responsible for the local
deformation of the continuous medium under the field of
the polaron charge and for the coupling of an electron with
acoustical phonons.

The Hamiltonian describing the dynamics of one elec-
tron interacting with the continuous polarizable and elas-
tic medium can be written as

H = H0 +Hint, (1)
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H0 is the Hamiltonian of the electron, the acoustic field
and the optical field in the absence of interaction, and it
reads:

H0 =
∫
Ψ+

(
− ~2

2m∗
∆

)
Ψdx

+
∫ {

P2

2νρm
+
νχ

2
(div u)2

}
dx

+
∫ {

ε0

2γ
Π2 +

εf

2ε0
Q2

}
dx. (2)

In this expression the first integral is the free electron part,
m∗ being the effective mass of free electrons. The second
integral represents the energy of elastic deformation, or
the energy of acoustical phonons in the quantum descrip-
tion, the phonon dispersion being neglected. P is the mo-
mentum density, ρm is the mass density: ρm = Mρ, ρ being
the ion concentration and M an effective atomic ion mass.
χ is related to sound velocity c by: χ = ρmc

2.
The third integral represents the polarization energy,

or the energy of the optical phonons.
Q is the dipole density andΠ is the canonically conju-

gated variable. ε0 is the vacuum dielectric constant (MKS
units), ω0 is the frequency of optical phonons in the ab-
sence of dispersion; γ is related to Fröhlich dielectric con-
stant εf by: γω2

0 = εf , εf being defined as: 1
εf

= 1
ε0r
− 1
ε∞r

, ε0
r

and ε∞r being respectively the static and high frequency
relative dielectric constants of the material.

The polarization part of H0 has the same form as in
the Fröhlich Hamiltonian [3]. In the sake of simplicity we
have neglected the dispersion of the optical phonons. This
can indeed be done (cf. Davydov [15]); however we do not
think that it introduces new important qualitative fea-
tures in the polarons properties. The form of the acous-
tical part is self-explanatory and does not deserve more
comment. Hint reads:

Hint = −
∫
Ψ+(x)Ψ(x)V (x|x′)[νZeρ div u(x′)

+ div Q(x′)]dxdx′ (3)

where Z represents an average ionization number per ion.
V (x|x′) is the Green function of the screened Coulomb
potential.

In the 3D model, V is actually a function of x− x′ in
the homogeneous medium, and Hint may be rewritten as:

Hint =
∫
Ψ+(x)Ψ(x){V ⊗ [νZeρ div u + div Q]}dx, (4)

where:

V ⊗A(x) =
∫
V (x|x′)A(x′)dx′,

operator ⊗ being the 3D convolution product.
It is important to note that the screening of the

Coulomb potential, although being a part of the linear
response of the material to the field of the test charge,
is not taken into account in the dielectric constants (εf

and ε0
r ). Indeed it associated with a displacement of the

electric charges, while the usual dielectric effect is due to
the creation of electric dipoles on site. In general V (x|x′),
the Green function of the screened potential which has the
meaning of the potential created in x by a point charge
located in x′, obeys the Poisson equation:

−ε0ε
0
r∆V (x|x′) = eδ(x− x′) + ρind(x|x′) (5)

where ρind(x|x′) is the charge density induced in x by the
point charge at x′. In the 3D model ρind(x|x′) has the
form:

1
ε0
ρind(x|x′) = −

∫
χ(x− x′′)V (x′′|x′) = −χ⊗ V (6)

where χ(x) is the response function of the material.
In the 2D model we assume that a confining verti-

cal force constrains the electrons to move in the horizon-
tal CuO2 planes (the polaron we are considering lying in
plane z = 0). For the same reason we make the simplifying
assumption that |Ψ |2 has the form:

|Ψ(x, z)|2 = |Ψ(x)|2δ(z) (7)

where x stands now for the horizontal coordinates.
The translational invariance with respect to variable

z is broken but it can be shown that we still have the
symmetry property:

V (x, z|x′, z′) = V (x′, z′|x, z) = V (x− x′; z, z′). (8)

Due to assumption (7), we need in expression (4) the value
of potential V in the z = 0 plane. Therefore expression (4)
for Hint is still valid provided the action of operator V⊗
on any function A(x, z) is the following:

V ⊗A(x, z) =
∫
V (x− x′; 0, z′)A(x′, z′)dx′dz′ (9)

ρind in equation (5) takes now the form:

ρind(x− x′; 0, z′) =
∑
n

δ(z′ − nl)ρn(x− x′) (10)

where l has the meaning of the average distance between
the CuO2 planes, and ρn(x−x′) is the 2D induced charge
density in the nth plane. It is given by:

1
ε0
ρn(x− x′) = −χ⊗ Vn

where Vn(x−x′) = V (x−x′; 0, z′ = nl). χ is here the 2D
response function and ⊗ represents the 2D convolution
product in the (x, y) plane. Summing up this results, the
Poisson equation reads in the 2D model:

−ε0
r∆V (x− x′; 0, z′) =

e

ε0
δ(x− x′)δ(z′)

−
∑
n

δ(z′ − nl)χ⊗ Vn. (11)
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For simplicity V (x; 0, z) will be noted in the following
V (x, z).

The precise form of χ, the response function, will be
analyzed in a next section.

The semi classical approximation amounts to consider
the various operators Ψ , Ψ+,u, P, Q, Π as scalar or vec-
tor variables (see for instance Ref. [15]). The dynamical
equations generated by Hamiltonian H are the following:
Ψ obeys the Schrödinger equation:

(i~∂t +
~2

2m∗
∆+ ϕ)Ψ = 0, (12)

in which the potential ϕ has the form:

ϕ = ϕac + ϕopt, (13)
ϕopt = V ⊗ div Q (14a)
ϕac = νZeρV ⊗ div u (14b)

∂tQ =
ε0

γ
Π (15)

∂tΠ =
γ

ε0
[ω2

0Q]−∇(V ⊗ |Ψ(x)|2) (16)

∂tu =
1
νρm

P (17)

∂tP = νχ∇(div u)− νZeρ∇[V ⊗ |Ψ(x)|2]. (18)

Eliminating variables P and Π, we obtain that u and Q
obey the following equations:

(∂2
t − c2∆)u = −Ze

M
∇(V ⊗ |Ψ |2) (19a)

(∂2
t + ω2

0)Q = −ε0

γ
∇(V ⊗ |Ψ |2). (19b)

Equations (12-19) are the dynamical equations of our
model.

We consider polaronic states whose electronic wave
function is of the form:

Ψ = exp
(

i
p · ξ
~

)
exp

[
i
(
p2

2m∗
+E

)
t

~

]
F (ξ) (20)

where p = m∗v and ξ = x − vt, v being the polaron
velocity. Momentum p will be assumed to be quantized as
those of a free electronic state.

The polaron equations read in terms of F :(
~2

2m∗
∆+ ϕ

)
F = EqF (21)[

∆− (v ·∇)2

c2

]
div u =

Ze

Mc2
∆V ⊗ |F |2 (22)[

1 +
(v ·∇)2

ω2
0

]
Q = −ε0

εf
∇V ⊗ |F |2 (23)

ϕac and ϕopt being obtained from div u and Q through
expressions (14). Eq has the meaning of the electronic part
of the polaron energy.

Solving equations (22, 23) for div u and Q is possible
in the limit of small v. Indeed the kernel of the operator

acting on div u is void for v < c, and the existence of a
regular solution of equation (23) for small v is shown in
Appendix A, even though the kernel of the operator acting
on Q is not void.

We shall restrict ourselves in this paper to study slow
velocity polarons (v � c). Indeed one encounters mathe-
matical difficulties when v is of the order of c, the polarons
becoming strongly anisotropic. Besides a localized solution
of the above equations is likely to disappear when v ex-
ceeds some critical velocity cm of the order of c. This is
easily seen in the case of the one-dimensional acoustical
polaron. Then one gets from equation (14):

ϕac =
(Ze)2

M(c2 − v2)
νρV ⊗ V ⊗ |F |2.

One observes that ϕac changes its sign when v becomes
larger than c, and, as a consequence, there no longer ex-
ists any localized solution of the Schrödinger equation.
This result has been already obtained by Wilson [16], and
Arikabe et al. [17].

1.1 The ground polaronic state

The ground polaronic state proves to be the lowest energy
state of the immobile polaron (v = 0). This ground state
will be studied in some details in the following, the shape
of slow polarons being close to those of the ground state.

For v = 0 we get from equations (22, 23):

div u =
Z

Mc2
eV ⊗ |Ψ |2 (24)

div Q =
ε0

εf
∆V ⊗ |Ψ |2. (25)

It is now convenient to introduce an arbitrary length unit
d, which will be conveniently chosen below in order to
minimize the number of parameters entering the polarons
equations. Then we put:

eV = WG, (26)

where:

W =
e2

ε0ε0
rd
· (27)

Then we obtain from expressions (24, 25), and using unit
length d:

ϕopt = − W

εfε0
r

∆G⊗G⊗ |Ψ |2 (28)

ϕac = ν(ρd3)
(ZW )2

Mc2
G⊗G⊗ |Ψ |2, (29)

and the total potential energy ϕ can be written, using

Ē =
~2

2m∗d2
as energy unit, in the form:

ϕ = (µ− S∆)G⊗G⊗ |Ψ |2 (30)



J. Peyraud and J. Coste: The screened polarons 273

where:

µ =
8π

(ε0
r )2

m∗

m

e2

ε0a0

Mc2
(νρd3)

=
8π
ε0

r

W
m∗

m

d

a0
(νρd3) (31)

and:

S =
W

εfε0
r Ē

=
8π

(ε0
r )2εf

m∗

m

d

a0
(32)

a0 being the Bohr radius:

a0 =
4πε0~2

me2
·

Let us note that, in the above expressions, Ψ has been
renormalized in order to preserve the original normaliza-
tion (〈|Ψ |2〉 = 1).

The value of µ measures the relative importance of the
acoustical coupling, µ = 0 corresponding to the case of a
pure optical polaron.

In the 3D model ϕ may be rewritten, thanks to equa-
tion (5):

ϕ = {µG⊗G+ S(G − χ⊗G⊗G)} ⊗ |Ψ |2, (33a)

while in the 2D model, we get through expression (11):

ϕ(x) =
{
µ

∫
dz G(x, z)⊗G(x, z)

+S[G(x, 0)−χ⊗
∑
n

G(x, nl)⊗G(x, nl)]}⊗|Ψ |2
}
.

(33b)

In this last expression of ϕ, the action of the convolution
operator in {x, z} space has been detailed, and ⊗ rep-
resents the 2D convolution product. Moreover we choose
d = l, and put:

νρ =
ncc

l
,

where ncc represents the effective 2D density of charge
carriers in the CuO planes; moreover νρ has the meaning
of the number of charge carriers in the cube of size l.

Our choice of d makes the numerical calculations eas-
ier. It may seem cumbersome and even unphysical that
ϕ(x) depends explicitly on the arbitrary length d through
the expressions for µ and S, making the solution of the
Schrödinger equation itself depending on d. But one must
remember that the Poisson equation obeyed by G (writ-
ten in d length unit), and therefore G itself, also depends
on d. As a result the polaron characteristics, such as their
binding energy, are independent of d, as they must be.

In terms of d and Ē units, Schrödinger equation (21)
reads:

(∆+ ϕ)Ψ = k2Ψ, (34)

with:

k2 = Eq/Ē.

In any case we shall write:

ϕ = A|Ψ |2 (35)

where operator A is defined by expression (33a) or (33b),
according to the model dimension.

2 Energy, stability, effective mass

2.1 Energy and effective mass of slow polarons

Parameter Eq entering Schrödinger equation (34) has the
meaning of the electronic part of the ground-state polaron
energy.

Let Ep be the total energy of the polaron, which in-
cludes the deformation of the crystal. Let us first evaluate
the total energy E0 of the immobile polaron. E0 is the
expectation value of H (given by Eq. (2)). It can be writ-
ten as:

E0 = Eq〈Ψ2〉 − (Eac +Eopt), (36)

where we leave the norm of Ψ unspecified; Eac =∫
νχ
2 (div u)2dx; Eopt =

∫
εr

2ε0
Q2dx.

Using the above expressions for Q and div u, Eac and
Eopt can be written in the form:

Eac =
νρ

2
(Ze)2

Mc2
〈[V ⊗ Ψ2]2〉 (37a)

Eopt =
ε0

2εf
〈[∇(V ⊗ Ψ2)]2〉 · (37b)

Then it is easily shown that Eopt + Eac = 1
2 〈ϕΨ2〉. On

the other hand we get from the Schrödinger equation
Eq〈Ψ2〉 = −〈(∇Ψ)2〉+ 〈ϕΨ2〉. Therefore we obtain:

E0 =
1
2

[Eq〈Ψ2〉 − 〈(∇Ψ)2〉] · (38)

Let us now consider a moving polaron. For a given veloc-
ity v, the polaron energy will be obtained by minimizing
〈H(Eq)〉 with respect to Eq. Now H can be written in the
form:

H = −
∫
Ψ+(

~2

2m∗
∆+ ϕac + ϕopt)Ψdx

+
∫ {

P2

2νρm
+
νχ

2
(div u)2

}
dx

+
∫ {

ε0
Π2

2γ
+

εf

2ε0
Q2

}
dx.

Replacing Ψ by its expression (20) in 〈H〉, one obtains:

Ep = −Eq +
m∗v2

2
− i~

∫
(v ·∇)Fdx

+
∫ {

P 2

2νρm
+
νχ

2
(div u)2

}
dx

+
∫ {

ε0
Π2

2γ
+

εf

2ε0
Q2

}
dx (39)
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where:

P = −νρm(v ·∇)u

Π = −ε0

γ
(v ·∇)Q,

and Eq is the eigenvalue of the Schrödinger equation (21).
Ep is evaluated in Appendix (B) in the limit v � c.

One obtains that it can be written in the form:

Ep = −E0 +
1
2
Mpv

2,

where:

Mp = m∗ +
1
D

{
1
c2
〈F 2

0 ϕ
0
ac〉 −

1
ω2

0

〈F 2
0∆ϕ

0
opt〉
}
. (40)

Assigning quantized values to the polaron momentum:
p = Mpv = ~k, the slow polarons energy spectrum reads:

Ep = −E0 +
~2

2Mp
k2. (41)

2.2 Energy and stability of the polaronic states

If Ep, the total polaron energy, is positive, then the pola-
ronic state is energetically favorable (compared with the
unbounded states) and therefore it can be a ground state
of the electron-lattice system. On the contrary a solution
with negative energy cannot be a ground state. Such a
solution is likely to be dynamically unstable.

Now the stability problem is posed here in rather pe-
culiar terms. We first observe that the wave function of
the actual physical system (electron + ionic sites) obeys
a linear (multi-variables) Schrödinger equation, and sta-
bility considerations about this system are irrelevant. But
the primitive dynamical system has been made non linear
through the use of the semi-classical approximation, and
the stability problem deserves now to be considered. And
it may be asked whether there is a relation between the
stability and the positiveness of the total energy.

The stability problem has been solved in the case of
the NLS equation thanks to the Vakhitov-Kolokolov (V-
K) criterium [18]: the stability of a localized solution (or
soliton) is determined by the sign of dN

dEq
. Since we have

in this case N ∼ E
1−D/2
q (D being the space dimension),

only the 1D solitons are stable. It is remarkable (see Ap-
pendix C) that the sign of Ep behaves exactly as those
of dN

dEq
as a function of Eq. Therefore satisfying the V-K

criterium or ensuring the positiveness of Ep are equivalent
statements.

Clearly the conditions of validity of the V-K criterium
are not fulfilled in the case of the complicated dynamical
system defined by above equations (33, 34). An inviting
conjecture is that the sign of the total energy still permits
one to decide on the stability of a stationary solution,
even in the case where the V-K criterium is not available:
then only the polarons with positive total energy would

be stable. We shall assume this conjecture to be true in
the following.

It could happen that the energy domain of polarons
be further limited by cm, the maximum allowed polaron
velocity. This would happen if E0 >

1
2Mpc

2
m. We shall not

consider here this possibility because, in the interesting
physical situations, the polaron velocities are found much
smaller than c. Then we shall assume that Epmax = 0
and expression (41) for the polaron energy spectrum to
be valid all along the polaron energy spectrum and the
maximum allowed wave number in expression (41) is kp

given by:

~2

2Mp
k2

p = E0. (42)

2.3 Energy of the bipolaron and of a pair of polarons

We want to derive in this section expressions for the en-
ergy of the ground state of the bipolaron and of a pair of
polarons.

The modifications which must be introduced in order
to pass from the polaron Hamiltonian (expression (2)) to
the bipolaron Hamiltonian are the following:
i) The polaron wave function will be noted Ψ(x1,x2).
ii) In H0 the kinetic energy reads: 〈(∇1Ψ(1, 2))2 +
∇2Ψ(1, 2))2〉, with obvious notations

Hint = Hel +Hc, (43a)

where:

Hel =
∫
Ψ+(x1,x2)Ψ(x1,x2){V (x|x1)

+ V (x|x2)}[νZeρ div u(x) + div Q(x)]dxdx1dx2

(43b)

Hc =
∫
eV (x1,x2)Ψ+(x1,x2)Ψ(x1,x2)dx1dx2, (43c)

Hc standing for the direct Coulomb interaction between
the two electrons.

Then Ebp, the bipolaron total energy reads:

Ebp = 2〈Φϕ〉 − 〈|∇1Ψ(1, 2)|2 + |∇2Ψ(1, 2)|2〉

− εfε0
rS
∫
G(1, 2)|Ψ(1, 2)|2d1d2 (44)

where:

ϕ = A|Ψ |2 and Φ(x) =
∫
|Ψ(x,x′)|2dx.

The bipolaron energy has been calculated by minimizing
Ebp with respect to the parameters entering the expression
for the chosen trial function Ψ(x1,x2) (see below Sect. 6).

Let us now consider the problem of two well-separated
(weakly interacting) polarons with antiparallel spins.
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In the weak coupling approximation (WCA), the or-
bital part of the pair wave function Ψ(x1,x2) is assumed
factorized:

Ψ(x1,x2) = a{Ψ1(x1)Ψ2(x2) + Ψ1(x2)Ψ2(x1)}

where wave functions Ψ1 and Ψ2 are respectively centered
at ρ1 and ρ2 (ρ = |ρ1 − ρ2| > lw). At zero order Ψi(x)
reduces to Ψ(x−ρi), which is the wave function of the un-
perturbed polaron centered at ρi. and the normalization
factor is a ≈ 1√

2
.

At first order the energy of the pair of polarons is found
to be:

Epair = 2Eq +∆E, where ∆E = δE − 〈eVc〉

Eq has the same meaning as above: it is the electronic part
of the unperturbed polaron energy. δE represents the spe-
cific polaron-polaron interaction; −〈eVc〉 is the contribu-
tion of the direct Coulomb interaction. The contribution
of the exchange terms are neglected for well-separated po-
larons 〈eVc〉 reads:

〈eVc〉 = e

∫
V (x− x′)|Ψ(x,x′)|2dxdx′

≈ e
∫
V (x− x′)Ψ2

1 (x)Ψ2
2 (x′)dxdx′

≈ e
∫
V (x− x′)Ψ2(x− ρ1)Ψ2(x− ρ2)dxdx′ (45)

δE is the sum of the energy variation of each polaron due
to the field of the other one. Calling ϕ(x − ρi) the field
due to polaron i, we get (at lowest order):

δE =
∫
Ψ2(x− ρ1)ϕ(x− ρ2)dx.

Summing the contributions of δE and 〈eVc〉 we obtain:

∆E(ρ) = 〈ϕ̃(Ψ2), Ψ2
1 〉 (46)

with:

ϕ̃(Ψ2) = SA|Ψ2|2 − Sεfε0
rG⊗ |Ψ2|2 (47)

where the last term is the contribution of the direct
Coulomb interaction.

In the 2D model, we obtain:

ϕ̃ =
{
µ

∫
dz G(x, z)⊗G(x, z) + S[(1− εfε0

r )G(x, 0)

−
∑
n

χ⊗G(x, nl)⊗G(x, nl)]

}
⊗ |Ψ2(x)|2. (48)

3 The screened potential

Up to now the form of response function χ(x), which de-
termines the screened Coulomb potential, has been left
unspecified. This response function is at the very heart of

the polaron physics because the existence and the dynam-
ics of the polarons are determined by the screening. We
shall only give here the expression for χ in the 2D model.

In the general case the charge carriers (density ncc) are
distributed over free electrons (density ne) and polarons
(density np), provided the polaronic states do exist. ncc

as well as χ, are the sum of two terms:

ncc = ne + np, (49)
χ = χe + χp, (50)

χe and χp being respectively the contributions of the free
electrons and polarons.

The electronic states form two bands: the polaronic
band (“P-band”), and the free states band (“FS-band”).
If free electrons are present, the Fermi level is associated
with a free state; the FS-band is defined in [0, EF], while
the P-band is defined in [−E0, 0]. Moreover we have at
T = 0:

2πne = k2
F. (51a)

Similarly the P-band is occupied up to kp, and we have:

2πnp = k2
p. (51b)

Finally we define kcc by:

2πncc = k2
cc. (51c)

Then we have:

k2
cc = k2

F + k2
p. (52)

Now it appears that, due to the finite energy domain
of the polaronic states, the calculation of χp(r) is differ-
ent from those of χe(r). We shall therefore study sepa-
rately the characteristics of the electronic and the pola-
ronic screening.

3.1 The electronic screening

The Lindhard calculation applies without any modifica-
tion. It is detailed in Appendix D in the case of the
isotropic 2D model. The assumption of anisotropy has
been made for the sake of simplicity, and it is of course
rather rough. We obtain at T = 0:

χ(k) = ks for k . 2kF

= ks

{
1−

√
1− 4k2

F

k2

}
for k & 2kF, (53)

where:

ks =
4
ε0

r

m∗

m

1
a0
· (54)

The Thomas-Fermi model is defined by: χ(k) = ks ∀k.
(Using l as the unit length, ks has the meaning of ksl).
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3.2 The polaronic screening

As was said above the finiteness of the polarons energy
domain introduces a modification in the calculation of χp.
Let us first consider the case of a pure polaronic screen-
ing. This implies that no free electrons would be present
in the material, and the electric field of a given polaron
would be screened by the surrounding polarons. Such a
situation cannot be a priori ruled out since the polaron
formation is energetically favorable. It would correspond
to the following energy diagram:

0

EF = −E0 +
~2

2Mp
k2

cc

−E0

In this case the Fermi level would be those of a pola-
ronic state, and EF would be negative. In other words the
P-band would be incomplete and the standard Lindhard
calculation holds, yielding the same expression for χp as
for χe, except for the replacement of m∗ by Mp. But Mp is
much larger than m∗, which makes χp(r) to take large val-
ues, and such a large screening kills the polaron. In other
words no polaronic solution is expected in the case of the
pure polaronic screening.

Let us therefore consider the case where free electrons
are present. We have then the following diagram:

EF

0

−E0

This situation corresponds to a filled P-band. Now it is
shown in Appendix D that such a band yields a vanish-
ingly small contribution in the limit T → 0.

The calculation of χp at finite T is given in Ap-
pendix D. In the limit T → 0, χp(k) vanishes except
in a small interval around k = 0 where it takes a finite
value. We have studied the polaronic solutions at finite
T and found that they differ only moderately from those
obtained at T = 0, as far as the polaron properties consid-
ered in this paper are concerned. For the sake of simplicity
we shall present only the case T = 0 in the following, and
therefore consider a pure free electrons screening.

4 Integrating the polaron equations.
The existence criterium

Let us first briefly comment the method of integration of
the polarons equations.

We look for the ground state of the system of equa-
tions (33, 34). Such a ground state is a bounded solution
of Schrödinger equation (34), which keeps the same sign
in all space: it looks like a ground state of an ordinary
(linear) Schrödinger equation.

It is important to remark that Schrödinger equa-
tion (34) is actually non linear, through the dependence
of potential ϕ on |Ψ |2. As a result the norm condition:

N = 〈|Ψ |2〉 = 1 (55)

is not trivial, and it determines, together with the bound-
ary conditions, eigenvalue Eq of this equation.

Equations (33, 34) has been solved numerically by it-
eration:
a) We start giving ourselves a trial function Ψ0. For a given
Eq = k2, Ψ0 has a definite value at the origin: C = Ψ0(0).
b) ϕ is evaluated, according to equation (33a) or (33b), in
terms of Ψ0, giving ϕ = ϕ0.
c) We look for the ground state (or eventually for one of
the other bound states) of the Schrödinger equation in
which ϕ is replaced by ϕ0. We obtain Ψ = Ψ1, and the
new eigenvalue E1 = k2

1. Moreover Ψ1 is given the same
initial value C as Ψ0.
d) ϕ is recalculated in terms of Ψ1, etc.
This procedure converges fairly well, the norm of the so-
lution being a definite function of C.

We want to show how satisfying the norm condition
imposes a constraint on the model parameters. Let us first
relax the norm condition. Then solving the Schrödinger
equation yields the value of N for a given Eq. If the func-
tion N(Eq) has some lower bound Nm, satisfying the norm
condition gives an existence criterium, namely:

Nm < 1. (56)

Usually Nm > 0 for D > 1 (see for instance Ref. [19]),
an exception is the case of the standard 3D optical po-
laron in the absence of screening. In this case, indeed, we
have ϕ ∼ 1

r ⊗ |Ψ |2. Then a simple scaling argument on
the Schrödinger equation shows that the norm N is pro-
portional to

√
E. Therefore Nm = 0 and there is no lower

bound for N and the norm condition can always be sat-
isfied. We shall now see that, as soon as ks 6= 0, we get
Nm 6= 0 (for D > 1) and therefore an existence criterium
has to be fulfilled. As a consequence the unscreened situ-
ation is pathological.

Let us now consider, in the 2D model, the variation
of N with Eq. Fixing the value of kcc and kF, we find a
unique solution of equation (34) corresponding to a given
initial value C = Ψ(0) of the wave function. Varying C we
may study the variation of N with Eq, without imposing
the norm condition.

We observe thatN is a monotonically growing function
of Eq. Therefore we get:

Nm = N(Eq = 0).

Let us mention that, in the 3D model, N(Eq) exhibits a
minimum Nm for a non-zero value of Eq. Coming back to
the 2D model, it is interesting to observe that, in the limit
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Fig. 1. Variation of N = 〈Ψ2〉 with Eq.

Eq → 0, lw, the width of the wave function, becomes very
large and, as a result, potential ϕ takes the limiting form
(see expression (35)):

ϕ = 〈A〉|Ψ |2. (57)

With this form of ϕ, equation (34) reduces to the sta-
tionary non-linear Schrödinger equation (NLS equation)
used in optics (see for instance Ref. [20]). Therefore the
polarons obtained in the limit k → 0 are nothing else
but NLS solitons. Making the further change of variables√
〈A〉Ψ = kf , and x → kx, (k =

√
Eq) we obtain that f

obeys the universal NLS equation:

(∆+ f2)f = f. (58)

The norm Ω of the unique localized solution of this equa-
tion is found to be:

Ω ≈ 11.7,

a result already obtained in a previous publication [19].
Therefore Nm must be identified with Ω, and we can

write:

〈f2〉 = 〈A〉〈|Ψ |2〉 = 〈A〉.

Then the existence criterium reads:

〈A〉 > 11.7. (59)

In the limit of small k, that is of very large polaron width,
the use of the Thomas Fermi screened potential is cer-
tainly justified.
〈A〉 has been evaluated in Appendix E. In the limit of

large ks and µ, it takes the form:

〈A〉 ≈ 2
3
µ

k2
s

, (60)

where ks is evaluated in 1/l unit.
Condition (59) then reads:

ks < ksmax, (61)

with:

k2
smax =

2
3

µ

11.7
· (62)

Since ks is known for a given material, condition (59) can
be expressed as a condition to be satisfied by µ:

µ > µcrit,

where, from equation (60),

µcrit = 17.55k2
s . (63)

Choosing the following values of the model parameters,
adapted to a typical cuprate case (see for instance Ref. [14]
pp. 14, 15): m∗ = 2m; ε0

r = 2; ν = 3 × 10−2; l = 5 Å;
νρl3 ≈ 0.64; Mc2 = 7.5 eV; Z = 2.1, one gets µ ≈ 1600,
while ks ≈ 37.7 (in 1/l unit).

Then one finds, using expression (63), µcrit ≈ 2.5×104.
Therefore µcrit would be about 15 times the experimental
µ. Therefore the existence criterium is not satisfied.

However it must be observed that a rather large uncer-
tainty exists about the numerical values to be attributed
to parameters µ and S of the model. Mc2 is quite roughly
estimated and we have used the Lindhard expression of
the response function, expression that was derived for an
isotropic system. Therefore we cannot draw a certain con-
clusion concerning the existence of weak polarons in a ma-
terial of the perovskite type. We only suggest that the
existence criterium is probably not satisfied in the bulk
material, and that the nucleation of the first polarons can
be realized only in particular regions of the crystal (for
instance near a boundary or a defect).

5 The self-consistent problem. Weak
and strong polarons

Considering the limit of zero temperature, we have seen
that the screening is due to the only free electrons. Then
χ(r) is a function of ne, that is a functional of np, thanks
to relation (49). On the other hand k2

p (or np) is propor-
tional to (Mp · Ep) by relation (42). This relation can be
rewritten, in Ē unit, as:(

Mp

m∗

)
E0 = k2

cc − k2
F, (64)

where Mp
m∗ is given by expression (40). Mp

m∗ and E0 are
known functionals of χ(r), that is known functions of kcc

and kF. Therefore solving the polarons equations yields
the value of kF for a given kcc, and also the P-band width
kp together with all the polarons characteristics (effective
mass and binding energy).

In other words np and Mp are obtained through a
self-consistent calculation, which means that χ cannot be
a priori given.

It is worth observing that the polaron problem is no
longer self-consistent in the 2D Thomas-Fermi model since
χe is then independent of ne or Mp.
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(a)

(b)

Fig. 2. (a) µ = µ1, (b) µ = µ2.

Giving ourselves χ = χe(r) independently of the po-
laron dynamics refers to two possible situations:

i) We are treating the one-polaron problem that is we
study the formation of a first polaron in a system where
only free electrons are present at initial time.

ii) We study the 2D Thomas-Fermi model where χe(r)
does not depend on ne.

Now we want to show that two types of polarons are ob-
tained according as the Linhard correction is or is not
relevant in the dynamics.

For that purpose let us fix kF (which is actually done in
the non self-consistent model: NSC model), and consider
two particular values µ1, µ2 (µ1 < µ2) of the coupling
parameter (which can be done by increasing ncc). Solving
the stationary polaron equations we find:
For µ = µ1 = 2500, lw, the polaron width, is relatively
large (lw ≈ 2.4), and its total energy Eq = 0.17.

For µ = µ2 = 2800, lw is much smaller (lw ≈ 0.25),
and its total energy Eq = 17. ϕ is now oscillating from the
origin. In any case |Ψ |2 is a monotonic decreasing function
of r (see Figs. 2, 3).

These results are easily interpreted by inspecting the
form of Lindhard potential Ve(r). Indeed Lindhard re-
sponse function χe(r) induces a potential Ve(r) which ex-

Fig. 3. Hysteresis cycle.

hibits the well-known Friedel oscillations where the ab-
scissa of the first extremum is of the order of (2kF)−1.

For small µ (µ = µ1) lw is larger than (2kF)−1, the
relevant values of k in χ(k) are such as k < 2kF and
the Lindhard correction to the screening can be ignored.
Then the polaron sees a non-oscillating attractive field
with small amplitude. For µ = µ2 lw is close to (2kF)−1.
Then the maximum of the polaron amplitude and of Ve(r)
are close to each other, which makes the coupling with the
lattice the most efficient. And the change of sign of Ve(r)
induces the oscillatory behavior of ϕ. ϕ(r) is attractive
near the origin (region A) then repulsive in region B, then
attractive again in a rather large region C.

We call respectively “weak” and “strong” the po-
larons obtained for µ = µ1 and µ = µ2. A
weak polaron is generated by a screened field of the
Thomas-Fermi type, while a strong polaron is associ-
ated with the Lindhard oscillating field. One observes in
Figures 2a, b that, in a weak polaron, ϕ and |Ψ |2 are quite
similar functions of r, which makes equation (34) close to
the NLS equation. The weak polarons are reminiscent of
the polarons of the standard theory.

On the contrary strong polarons look like different
physical objects. Actually one observes a very sharp tran-
sition from weak to strong polarons when µ is increased.
Therefore one can guess that the two types of polarons are
to be found simultaneously in some range of µ, and that an
hysteresis cycle can be observed when µ is first increased,
then decreased. This is indeed the case (see Fig. 3).

Figure 3 represents, for a given value of kF, the varia-
tion of Eq in terms of µ/µcrit. The strong polarons must
be studied in the frame of the self-consistent model, and
it will be shown that the solutions of the SC model are
always strong polarons.

However the nucleation of the first polarons from the
free electrons initially present in the material calls for the
NSC problem. We have shown before that the polarons
for which the existence criterium is most easily satisfied
are large scale (Eq → 0). Therefore they are weak po-
larons, and this means that weak polarons are not only of
academic interest.
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Fig. 4. Polaronic mass and Fermi level in function of kcc.

6 The strong polarons

The condition of existence of polarons drastically changes
in the self-consistent model. Indeed the formation of po-
larons is accompanied by the diminution of the number of
the free electrons which are responsible of the screening:
the solution of the SC problem gives a much lower value
of kF (kF ∼ 0.4) that is a value of ne which about 25 times
smaller than ncc. The closure of the SC problem is nothing
but equation (64).

We have found solutions of equation (64) in a large
range of kcc values (0.5 < kcc < 5 in 1/l unit). These
solutions are always of the strong polaron type and they
are characterized by a very small value of E0 (E0 ∼ 10−3),
while electronic energy Eq remains finite. This means that,
in a strong polaron, the gain of energy due to the elec-
tron field is almost compensated by the energy decrease
due to the lattice deformation. And the total binding en-
ergy is quite small. On the contrary the amplitude of ϕ,
the oscillating polaron field, remains finite. An important
consequence is that the energy of the polaron pair is also
finite (see below Sect. 6).

We also find that kF is quite small (compared to its
value in a crystal with electron density ncc) and is a grow-
ing function of kcc (see Fig. 4). The width of the FS band is
quite small while that of the P-band is given by kp ≈ kcc.
The polaron effective mass is also a growing function of
ncc, and we find Mp/m

∗ ≈ 700 for a typical perovskite
(kcc ≈ 1.7).

The size of the polaron pair is found much larger than
those of the individual polarons, which justifies the per-
turbative calculation of the pair energy given above. This
also explains the existence of the pair, even when the di-
rect repulsive Coulomb interaction is taken into account.

Let us consider a pair of polarons, whose inter distance
is ρ = r/l. At large ρ, the dominant term in expression (48)
for the interaction potential is due to acoustical term ϕac.
The force associated to ϕac is attractive (while those as-
sociated to ϕopt is repulsive) and it can be shown that it
dominates, at large distance, the contribution of the direct
repulsive Coulomb interaction. As a consequence distant
polarons always attract each other. We have represented
in Figure 5 the variation of ∆E, the pair binding energy,
as a function of ρ.

Fig. 5. Binding energy in function of ρ.

Fig. 6. Epair as a function of kcc.

The minimum Epair of this function is the binding en-
ergy of the pair, and we verify that the weak coupling con-
dition (namely: the size of the polaron pair is much larger
than those of the individual polarons) is actually verified
at the minimum of ∆E. (Remember that this condition is
required in order that our above calculation of the pair en-
ergy holds.) One also finds that Epair is much larger than
E0, the binding energy of the individual polarons. This
fact is clearly connected with the oscillating character of
ϕ(r). Figure 6 is the graph of Epair as a function of kcc.

We have obtained that polarons are correlated in the
CuO2 horizontal planes, the correlation length being of
the order of l, the average interdistance of these planes.
Since the interaction potential between polarons is actu-
ally 3D, it may be guessed (and will be soon verified) that
polarons are also vertically correlated (correlation between
polarons located in adjacent planes). And this correlation
could play a role in the c-axis conductivity. We are thus
led to propose to associate Epair and the perovskites pseu-
dogap. Such a link between the horizontal and vertical
dynamics of the charge carriers is considered by Basov
et al. [21] in connection with the pseudogap problem. On
the other hand we find that Epair is of the order of 200 K,
and falls down for large ncc: properties which are in ac-
cordance with experimental observations [22].

We conclude from the above results that the di-
rect repulsive Coulomb interaction is not able to oppose
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the existence of pairs of polarons. This is explained by the
relatively large size of these pairs. On the contrary bipo-
larons are expected to be more compact structures and the
contribution of the direct Coulomb interaction is expected
to be much larger. We have minimized expression (44) for
the bipolaron energy, using a trial function of the form:

Ψ(x1,x2) = α[1 +
λ

2
(|x1|+ |x2|)]exp

{
−λ

2
(|x1|+ |x2|)

}
(65)

where α is related to λ in order to ensure the normalization
of Ψ . This form of Ψ ensures the vanishing of the partial
derivatives of Ψ at the origin, a property that generalizes
those found to hold in the polaron case. We have also used
a two parameters trial function (with a quadratic poly-
nomial form multiplying the exponential) and the mini-
mization of Ebp with this trial function yields comparable
values of the bipolaron energy. More precisely we have
solved the variational problem for a bipolaron Hamilto-
nian in which the prefactor εfε0

r in the direct Coulomb
term was replaced by some arbitrary ε. We then find a
positive value of Ebp (that is a negative bipolaron energy)
as long as ε is smaller than some εmax. But, for any value
of kcc, in the large domain investigated, we have found
εmax < εfε0

r . Therefore the action of the direct Coulomb
term is too large to permit the existence of a bipolaron
with negative energy. In other words stable bipolarons are
not allowed in the frame of the present theory, and as far
as our variational method works.

7 Conclusion

Screened polarons appear to be possible solutions of the
equations of the electron- lattice interaction for materials
of the perovskite type, even though the initial nucleation
of these polarons deserves further studies. An important
feature is the oscillating structure of the polaron field,
related itself to the Friedel oscillations of the screened
Coulomb potential.

The bipolarons seem to be excluded in the frame of
our continuous theory. On the other hand the polarons
are able to form pairs with a finite binding energy (of the
order of 200 K). We propose to associate this energy with
the pseudogap experimentally observed in perovskites.

It is worth remarking that our results have been ob-
tained in the limit of zero temperature, the polarons
properties being moderately sensitive to T . Actually we
find that the pairing phenomenon exists up to kBT ∼
Epair(T = 0), that is for temperatures significantly higher
than Tc. Of course our results are expected to be consider-
ably modified, at T < Tc, when superconductivity occurs,
that is when a collective interaction between polarons (or
pairs of polarons) must be taken into account. The idea
that a change in the pairing mechanism takes place at
T = Tc in high Tc materials has been already given in the
literature (see for instance Deutscher [23]).

We are not able, at present time, to foresee the struc-
ture of the super conducting state in a medium where most

of the charge carriers are polarons. We may remark that
we get here a basic difference with the situation described
in BCS theory, the correlation between the charge carriers
(giving the Cooper pairs) being the result of a collective
interaction. The BCS point of view could eventually be
generalized to a system where polarons are already asso-
ciated in pairs (at T > Tc). This generalization will be
presented in a next publication.

The second point of view is those of the “molecular
conductivity” initiated by Schaffroth et al. [24], and ex-
tensively developed, mainly by Alexandrov, in the eighties
and the nineties (we only give the early references [25,26]
in the Bibliography), under the generic name of bipola-
ronic theories. Since “screened bipolarons” are excluded
in our theory, they ought to be replaced by the polarons
pairs.

It must be clear that we are not opposing here the con-
ventional bipolaronic theories which are based on small
bipolarons. Indeed bipolarons cannot be described in the
frame of our continuous theory. We only propose an alter-
native in polaron theory which has been suggested by some
unexpected effects of the screening of the Coulomb inter-
action. By the way it may be remarked that our “strong
polarons” are in an intermediate size domain between
the conventional large polarons and the Hölstein small
polarons.

Appendix A

We propose to solve equation (23) of the main text in
the limit of small values of v. Assuming v parallel to the
coordinate this equation yields to (ϕ =∇ ·Q):[

1 +
v2

ω2
0

∂2
x

]
ϕ = −ε0

εf
∆V ⊗ |F |2

or [
1 + ε∂2

x

]
ϕ = S (A.1)

where: S = − ε0εf ∆V ⊗ |F |2 and ε = v2/ω2
0. In these equa-

tions we shall use the unit of length d of the main text
therefore ε is a dimensionnless quantity which we assume
to be small.

Let L be the operator 1+ε∂2
x. L depends only on x and

(A.1) is a one dimensional equation invariant under space
reflexion (x → −x), therefore ϕ and also Ψ are functions
of |x|. It is easily shown that the kernel N and the Green
function G of operator L are given by:

G =
ε

2
sin
( |x|
ε

)
(A.2)

N = cos
(x
e

)
· (A.3)

Since S, as ϕ and Ψ , is invariant under space reflection,
the solvability condition of equation (A.1) is that S must
be orthogonal to the unique function N .
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Finally the general solution of equation (A.1) reads:

ϕ = G ⊗ S + λN (A.4)

where λ is an arbitrary parameter. In addition S(|Ψ |2)
must satisfy orthogonality condition:

〈N |S(|Ψ |2)〉 = 0 (A.5)

Ψ satisfies a Schrödinger equation in which ϕ depends on
λ according to equation (A.4), which makes Ψ to be a
function of λ. Equation (A.5) determines λ.

Now it can be verified that, for small ε (that is in
the limit of small v), Green function G admits a regular
expansion in terms of ε, which reads:

G = [1 + ε∂2
x]−1 = δ(x){1− ε∂2

x + ...} (A.6)

the first (not obvious) step is to show that we have G →
δ(x) when ε→ 0. This is equivalent to show that 〈G, S〉 =
0, and this relation proves to hold provided orthogonality
condition (A.5) is satisfied.

We shall now proceed to evaluate the parameter λ. Dis-
regarding for simplicity the acoustic part of the potential,
Ψ obeys the Schrödinger equation in which the potential
is given by expression (A.4):

[∆+ G ⊗ S + λN ]Ψ = EΨ. (A.7)

If λ is small (an assumption which will be a posteriori
verified) the λ term in equation (A.7) will be considered
as a perturbation.

Let Ψ0 and E0 be the eigenfunction and eigenvalue of
equation (A.7) for λ = 0. This equation reads:

[∆+ G ⊗ S(Ψ2
0 )]Ψ0 = E0Ψ0. (A.8)

Differentiating equation (A.8) with respect to E0, we
obtain:

H1 =
∂Ψ0

∂E0
= Ψ0 (A.9)

where:

H1 = ∆+ G ⊗ S(Ψ2
0 ) +

δ{Ψ0G⊗ S(Ψ2
0 )}

δΨ0
−E0. (A.10)

We now put:

Ψ = Ψ0 + Ψ ′, E = E0 +E′.

Linearizing equation (A.7) with respect to Ψ ′, we obtain:

H1Ψ
′ = (E′ − λN )Ψ0. (A.11)

Now differentiating equation (A.8) with respect to x it is
easily seen that:

H1(
d

dx
Ψ0) = 0. (A.12)

Therefore d
dxΨ0 belongs to the kernel of H1. Moreover it

can be shown that d
dxΨ0 is the only function of Ker(H1).

Now we have: 〈 ∂Ψ0
∂E0

,H1Ψ
′〉 = 〈Ψ0, Ψ

′〉, on account of
the hermiticity of H1. But, working at constant norm, the
linear deviation 〈Ψ0, Ψ

′〉 of the norm must vanish. From
equation (A.11) we obtain:

〈 ∂Ψ0

∂E0
H1Ψ

′〉 = 〈 ∂Ψ0

∂E0
(E′ − λN )Ψ ′〉

=
1
2

{
E′〈∂Ψ

2
0

∂E0
〉 − λ〈N , ∂Ψ

2
0

∂E0
〉
}

= 0. (A.13)

Therefore we get:

E′ = λ
〈N , ∂Ψ2

0 /∂E0〉
〈∂Ψ2

0 /∂E0〉
(A.14)

λ will be determined thanks to orthogonality rela-
tion (A.5), which reads at first order in Ψ ′:

〈N |Ψ2
0 〉+ 2〈N |Ψ0Ψ

′〉 = 0. (A.15)

Equation (A.11) may be formally solved as:

Ψ ′ = H−1
1 (E′ − λN )Ψ0. (A.16)

The use of inverse operator H−1
1 in (B.15) is justified.

Indeed the kernel of this operator is the odd function d
dxΨ0.

But (E′ − λN ) Ψ0, which is a function of |x|, is an even
function and therefore orthogonal to Ker(H1). Replacing
Ψ ′ by expression (A.15) in equation (A.13), we obtain:

0 = 〈N |Ψ2
0 〉+E′〈N |∂Ψ

2
0

∂E0
〉 − 2λ〈NΨ0H

−1
1 NΨ0〉 (A.17)

Ψ2
0 and ∂Ψ2

0 /∂E0 are regular, non oscillating functions of
|x|, whileN is rapidly oscillating in the limit ε→ 0. There-
fore the two first terms in equation (A.17) are extremely

small: they are actually of the order of exp(−
√

E0
ε ). On

the other hand the third expectation value is not small
(or, at least much larger than the first ones). This is due
to the fact that H−1

1 is a regular operator depending only
on |x|. As a result H−1

1 NΨ0 oscillates at the same fre-
quency than N , and, generically it has a finite component
on N . This gives a finite value to 〈NΨ0H

−1
1 NΨ0〉. Finally

E′ is proportional to λ according to (A.14), and the sec-
ond term may be neglected in equation (A.17), compared
to the third one. This leads to the following expression
of λ:

2λ =
〈N , Ψ2

0 〉
〈NΨ0,H

−1
1 NΨ0〉

, (A.18)

and, according to the above argument, the value of λ is
of the same order as those of the numerator, that is λ ∼
exp(−

√
E0
ε ). λ is therefore vanishingly small in the cases

of physical interest where E0 is finite and ε is small. This
result also shows that the solution of equation (A.7) has
a non analytical dependence in λ. But λ is so small that



282 The European Physical Journal B

the λ extra term in the Schrödinger equation can be safely
neglected. Then we are left with equation (A.8), in which
the potential can be expanded thanks to expansion (A.6)
of the Green function. At the end we obtain, in the limit
of small v, a well-defined solution which can be expanded
in terms of v2/ω2

0.

Appendix B

We propose to derive the expression ofEp, the total energy
of the moving polaron in the limit of small polaron velocity
(v � c). Ep is defined by equation (38) of the main text.

Using equations (22, 23), one obtains that div u and
Q obey the following equations

[∆− (v ·∇)2

c2
]div u =

Ze

Mc2
∆B (B.1)

[1 +
(v ·∇)2

ω2
0

]Q = −ε0

εf
∇B (B.2)

B = V ⊗ |F |2. (B.3)

Solving equations (B.1, B.2) for div u and Q is possible in
the limit of small v.

We shall write the formal solutions of equa-
tions (B1, B2) in the form:

div u =
Ze

Mc2
Lac(v)B (B.4)

Q = −ε0

εf
Lopt(v)∇B, (B.5)

with

Lac = [1− (v ·∇)2

c2
∆−1]−1,

Lopt = [1 +
(v ·∇)2

ω2
0

]−1,

Lac and Lopt reducing to identity for v = 0.
Then ϕac and ϕopt given by expressions (14) of the

main text can be written as:

ϕac = νρ
(Ze)2

Mc2
LacV ⊗B (B.6)

ϕopt = −ε0

εf
LoptV ∆B. (B.7)

It is easily shown that Eq, the eigenvalue of Schrödinger
equation (21) for a given v, actually minimizes 〈H〉.

Let us write Ep as:

Ep = E0 + δEp(v) (B.8)

δE(v) will be calculated perturbatively (δE � Ē).
We first observe that we have for small v: F = F0(|x|)+

O(v2), where F0 is the wave function of the immobile po-
laron. Therefore the contribution of the second term in
equation (2) is higher order than v2. It will be neglected.

Let us now consider the momentum terms in equa-
tion (2) of the main text. They give, at first order in v2:

νρm

2

∫
[v ·∇(u0)]2dx +

ε0

2εf

∫
[v ·∇(Q0)]2dx

=
(
ω2

2c2

)
νρ

(Ze)2

Mc2
〈B2

0〉+
(
ω2

2ω2
0

)
ε0

εf
〈(∆B0)2〉, (B.9)

where:

w2 =
v2

D
,

and u0, Q0 and B0 are the values of u, Q, B for v =
0. In particular B0 = V ⊗ |F0|2. Similarly we define ϕ0

ac

and ϕo
opt.

The last expression has been obtained by using expres-
sions (B.4, B.5) (written at v = 0), and taking account of
u0 and Q0 being isotropic and irrotational field vectors.
Expression (B.9) reads in terms of ϕ0

ac and ϕ0
opt (cf. ex-

pressions (B.6, B.7)):

w2

2c2
〈F 2

0ϕ
0
ac〉 −

w2

2w2
0

〈F 2
0∆ϕ

0
opt〉.

Therefore we are left with the following expression for
δEpol:

δEp =
m∗v2

2
+
w2

2c2
〈F 2

0 ϕ
0
ac〉 −

w2

2ω2
0

〈F 2
0∆ϕ

0
opt〉+A,

(B.10)

with:

A =
νχ

2
δ〈(div u)2〉+

εf

2ε0
δ〈Q2〉 − δE. (B.11)

We shall now show that A = 0.
First A can be rewritten, using expressions (B.4, B.5)

as:

A = νρ
(Ze)2

Mc2
〈B0δ(LacB)〉 − ε0

εf
〈B0δ(Lopt∆B)〉 − δE.

Now the variation (with respect to v) of Shrödinger equa-
tion (21) yields:

H0δF + [δ(ϕac) + δ(ϕopt)]F0 = F0δE, (B.12)

where

H0 = ∆+ ϕ0
ac + ϕ0

opt −E0.

Multiplying equation (B.12) by F0 and space averaging,
we get:

δE = 〈F 2
0 [δ(ϕac) + δ(ϕopt)]〉

= νρ
(Ze)2

Mc2
〈F 2

0 δ(LacV ⊗B)〉

− ε0

εf
〈F 2

0 δ(LoptV ⊗∆B)〉.



J. Peyraud and J. Coste: The screened polarons 283

Finally it is easily verified that 〈B0δ(LacB)〉 =
〈F 2

0 δ(LacV ⊗B)〉, and

〈B0δ(Lopt∆B)〉 = 〈F 2
0 δ(LoptV ⊗∆B)〉.

Finally δEp(v) is of the form Mpv
2, that is the low energy

spectrum of polaronic states coincides with the spectrum
of a free particle with effective mass Mp given by:

Mp = m∗ +
1
D

{
1
c2
〈F 2

0ϕ
0
ac〉 −

1
ω2

0

〈F 2
0∆ϕ

0
opt〉

}
· (B.13)

Appendix C

NLS equation in dimension D, which we shall write as
[i∂t + ∆ + φ2]φ = 0, has the following stationary form
(obtained when φ has the time dependence exp(−iEt))

[∆+ φ2]φ = Eφ, where ∆ =
d2

dr2
+
D − 1
r

d
dr
·
(C.1)

Multiplying equation (C.1) successively by φ and rD dφ
dr ,

then integrating over r, we obtain the two relations:

〈(dφ
dr

)2〉 = 〈φ4〉 −E〈φ2〉 (C.2)

〈(dφ
dr

)2〉 =
D

2−D [E〈φ2〉 − 1
2
〈φ4〉]. (C.3)

From these relations we get:

〈φ4〉 =
4

4−DE〈φ
2〉 (C.4)

〈(dφ
dr

)2〉 =
D

4−DE〈φ
2〉. (C.5)

Thanks to expression (C.5) expression (38) of the main
text for the total polaron energy can be written as:

Epol =
2−D
4−DE〈φ

2〉. (C.6)

We see that Epol is positive for D = 1 and negative for
D = 3, while it vanishes for D = 2. Let us remark that
the case D > 4, where Epol would be positive, must be
disregarded. Indeed relation (C.4) would assign a negative
value to 〈φ4〉, which is impossible: there does not exist any
stationary solution of the NLS equation for D > 4.

We conclude that relating the stability of the station-
ary solution and the positivity of the total polaron energy
is quite justified: one obtains exactly the same result as
by using the Vakhitov-Kolokolov criterium. (Note that for
D = 2 the two criteriums fail to decide. It is known that,
a more refined argument is needed to conclude to the un-
stability of the solution.)

Appendix D

As was said in the main text, the k-domain of polaronic
states is finite: D = [0, kp], and it appears that the calcu-
lation of Lindhard corrections (see Ref. [12]) is modified
when D is finite. We shall therefore briefly recall the Lind-
hard derivation in this case.

In the presence of an external weak perturbative po-
tential ϕ the wave function |Ψk〉 of a charge carrier is mod-
ified as follows:

|Ψk〉 → |Ψk + δ|Ψk〉

with

δ|Ψk〉 =
∑

k 6=k′,k′⊂D

1
Ep(k)−Ep(k′)

〈Ψk′ϕΨk〉|Ψk′〉 (D.1)

the induced space density fluctuation δρ(r) is given by:

δρ(r) =
∑
k⊂D

δ|Ψk(r)|2fk (D.2)

where fk is the polaronic Fermi distribution. Insert-
ing (D.1) in (D.2) and taking into account of the restric-
tions k,k′ ⊂ D we obtain finally for the linear response
function χ(q):

χj(q) =
4
a0

1
ε0

r

1
2π

mj

m

∫
|k±q

2 |<kp

dk
f(k− q

2 )− f(k + q
2 )

k · q
(D.3)

where index j refers to the class of charge carriers (free
electrons or polarons). We take as f(k) the isotropic Fermi
function:

f(k) =
1

exp[β(Ep −EF)] + 1

(EF: chemical potential of the electrons).
Calculating χe (the contribution of the free electronic

states ) km is infinite; the evaluation of the above un-
bounded integral is easy, and equation (D.3) gives (with
mj = m∗) gives:

χe(q) = k̃s for k ≤ 2kF

= k̃s

{
1−

√
1− 4k2

F

k2

}
for k ≥ 2kF,

where k̃s = 4
a0

1
ε0r

m∗

m . This is the 2D version of the 3D
Lindhard formula.

Let us now consider the polaronic contribution. We
first obtain from expression (D.3) for χp(q) that:

χp(0) = − 4
a0

Mp

me
[f(0)− f(kp)] (D.4)

χp(q) = 0 for |q| ≥ 2kp. (D.5)

An important remark is that χ vanishes in the case when
the polaronic band is fully occupied. We have indeed in
this case: χp(0) = 0 since f(0) = f(kp) = 1.
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In terms of energy unit Ē = ~2

2m∗d2 of the main text,
Ep reads:

Ep = −E0 +
m∗

Mp
k2 =

m∗

Mp
k2

m(x2 − 1) (D.6)

where x = k/km. With these notations we get:

β(Ep −EF) = β[
m∗

Mp
k2

m(x2 − 1)−EF]

= B(x2 − 1)−A (D.7)

with

B = β
m∗

Mp
k2

m; A = β(EF +Emax).

It is worth noting the limit β →∞ does not imply B→∞.
Putting z = q/km, expression (A.5) is rewritten as:

χp(z) =
4
a0

1
ε0

r

1
2π

Mp

me
I

I(z) =
∫
|x± z

2 |〈1
dx
f(x− z

2 )− f(x + z
2 )

x · z (D.8)

with:

f(x) =
1

exp[B(x2 − 1)−A] + 1
· (D.9)

Evaluating quantity I for reasonable values of parameters
A and B can only be done numerically, except in the limit
B →∞. Let us write in this case:

B(x2 − 1)−A = B(x2 − x2
f ) with x2

f = 1 +A/B.

Two cases are to be considered:
a) xf � 1 (then A is negative).
the limitation |x ± z

2 | < 1 can be disregarded and we
obtain:

I(z) = 1 for |z| ≤ 2xf

I(z) = 1−
√

1− 4x2
f

z2
for |z| ≥ 2xf .

In other words I(x) has the same form as for the free
electronic states.
b) xf & 1
In this case the limitation |x± z

2 | < 1 plays a central role
and we find after some geometry:

I(z) = 1− 1
exp(−A) + 1

=
exp(−A)

exp(−A) + 1
for |z| = 0

I(z) = 0 for |z| 6= 0.

A quite non-analytical result! If the order of the limits
was reversed: making first B → ∞, then |z| → 0, then
we should get I = 0 every where. It is clear that this last
procedure is unphysical. In the following we shall always

Fig. 7. Function G(z) for B = 0 and B = 20.

assume that A > 0, therefore the limitation |x ± z
2 | < 1

plays an important role. From equation (D.4) we obtain
immediately:

I(0) =
1

exp(−B −A) + 1
− 1

exp(−A) + 1
· (D.10)

Although not very large even for β → ∞ quantity B is
noticeably larger than one therefore

I(0) ≈ exp(−A)
exp(−A) + 1

· (D.11)

Let us remember that I(z) = 0 for |z| ≥ 2. Numerical
calculations show that I(z) < I(0) for |z| 6= 0. In the
domain 0 < |z| < 2, I(z) is generally a gentle decreasing
function except, for large values of B, near |z| = 2 where
I is non analytical, and I(0) vanishes for B → ∞. The
following are asymptotic expansions of I(z):

I(z) ≈ I(0)G(B, z). (I(0) ≈ exp(−A))
for exp(−A)� 1 (D.12)

I(z) ≈ I(0)
2
π

[
arccos(

z

2
)− z

2

√
1− z2

4

]
for B � 1. (D.13)

We have exp(−A)� 1 and I(z)/I(0) ≈ G(B, z).
In Figure 7 we have represented G(z) for B = 0 and

B = 20.

Appendix E

We want to solve the equation obeyed by Green function
G(x, z) of the main text when the response function is
those of the Thomas Fermi model, that is χ = ks in Fourier
space:

−∆G(x, z) = δ(x)δ(z)− ksδ(x)G(x, z)
∑
n

(z − n) (E.1)

where the adopted unit length is d = l.
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We shall proceed in Fourier space with respect to vari-
able x. Equation (E.1) becomes:

(−σ2 + ∂2
z )G(σ, z) = −δ(z) + ksG(σ, z)

∑
n

(z − n)

(E.2)

where σ is the Fourier variable associated with x.
Let now Gn(σ) be the solution of equation (E.2) in

interval [n < z < n + 1]. Gn(σ) and its derivative with
respect to z have the form:

Gn = Ane−σz +Bneσz (E.3a)

∂zGn = σ(−Ane−σz +Bneσz). (E.3b)

Now ∂zGn exhibits a finite jump at z = ln, due to the
presence of the δ function in equation (E.2).

This jump is defined by:

∂zGn(z + ε)− ∂zGn(z − ε) = ksGn(ε� 1). (E.4)

If {An, Bn} are defined as the amplitudes just above z =
n(z − n = ε), we have the following relations between
{An+1, Bn+1} and {An, Bn}:

An+1 +Bn+1 = Ane−σ +Bneσ (E.5a)

σ(−An+1 +Bn+1) = σ(−Ane−σ +Bneσ)
+ ks(An+1 +Bn+1). (E.5b)

The first relation expresses the continuity of G on z =
(l + 1)n, the second one expresses relation (B.4) on the
same frontier.

Putting Xn =
0
B@
An

Bn

1
CA these two relations can be put in

the following matricial form:

Xn+1 = QXn (E.6)

Q being the matrix:

Q =

(
(1− a)e−ϕ −aeϕ

ae−ϕ (1 + a)eϕ

)

where ϕ = σ, a = ks
2σ .

Eigenvalues of matrix Q are: ξ± = e±θ, where θ is
given by:

cosh θ = coshϕ+ a sinhϕ. (E.7)

We look for a solution of equation (C.6) which does not
diverge when n→∞. This is obtained by choosing initial
vector X0 parallel to ξ−, the eigenvector associated with
ζ−. This implies that we have:

B0

A0
=
(

1
a

)
[(1− a)e−2ϕ − e−(θ+ϕ)]. (E.8)

On the other hand, the continuity relations written on
z = 0, with the additional statement that ∂zG is antisym-
metric (∂zG(z) = −∂zG(−z)), permit one to express A0

and B0 in terms of initial value G0 = G(σ, 0). We get:

2A0 = (1− a)G0 +
1

2σ

2B0 = (1 + a)G0 −
1

2σ
(E.9)

G0 can be obtained from equations (E.8) and (E.9).
Then the solution of equations (E.6) reads:

Xn = e−nθX0,

from which we get:

G(k, z) =
∑
n

Y (z − n)Y [(n+ 1)− z]e−nθ

×
{

e−σ(z−n)A0 + eσ(z−n)B0

}
(E.10)

where Y is the Heaviside step function.∫
G(σ, z)2dz.

Let us now evaluate the average value of operator A of
the main text. It is given by:

〈A〉 =
{
µ

∫
G(σ, z)2dz

+S[G(σ, 0)− ks

∑
n

G(σ, n)⊗G(σ, n)]

}
σ=0

.

In the limit σ → 0, we find:

G(σ, 0) = G0 =
1
ks

1 + ks − e−θ

3 + ks − e−θ∑
n

G(σ, n)⊗G(σ, n) =
1 + e−2θ

1− e−2θ
G2

0∫
G(σ, z)2dz =

2
k2

s

1 + e−2θ

1− e−2θ

×
(1− e−θ)(1 + ks − e−θ) + (ks)2

3

(3 + ks − e−θ)2
,

where:

e−θ = 1 +
ks

2
−
√

(1 +
ks

2
)2 − 1 ·

In the limit of large ks, e−θ is negligible and we get: G0 ≈
1
ks

(1− 2
ks

). Then 〈A〉 reduces to:

〈A〉 ≈ 2
k2

s

{
S +

µ

3

}
(in l unit).

In the limit of large µ we are left with:

〈A〉 ≈ 2
3
µ

k2
s

·
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